- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Elkkabash, Mohamed (1)
-
Guo, Chunlei (1)
-
Jalil, Sohail A (1)
-
Wei, Ran (1)
-
Zhang, Jihua (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Optical analog computation is garnering increasing attention due to its innate parallel processing capabilities, swift computational speeds, and minimal energy requirements. However, traditional optical components employed for such computations are usually bulky. Recently, there has been a substantial shift toward utilizing nanophotonic structures to downsize these bulky optical elements. Nevertheless, these nanophotonic structures are typically realized in planar subwavelength nanostructures, demanding intricate fabrication processes and presenting limitations in their numerical apertures. In this study, we present a three-layer thin-film optical coating different from the conventional Fabry–Pérot nanocavity. Our design functions as a real-time Laplacian operator for spatial differentiation, and it remarkably boasts an ultrahigh numerical aperture of up to 0.7, enabling the detected edges to be sharper and have closely matched intensities. We also experimentally demonstrate its capacity for effective edge detection. This ultracompact and facile-to-fabricate thin-film spatial differentiator holds promising prospects for applications in ultrafast optical processing and biomedical imaging.more » « less
An official website of the United States government
