skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jalil, Sohail A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optical analog computation is garnering increasing attention due to its innate parallel processing capabilities, swift computational speeds, and minimal energy requirements. However, traditional optical components employed for such computations are usually bulky. Recently, there has been a substantial shift toward utilizing nanophotonic structures to downsize these bulky optical elements. Nevertheless, these nanophotonic structures are typically realized in planar subwavelength nanostructures, demanding intricate fabrication processes and presenting limitations in their numerical apertures. In this study, we present a three-layer thin-film optical coating different from the conventional Fabry–Pérot nanocavity. Our design functions as a real-time Laplacian operator for spatial differentiation, and it remarkably boasts an ultrahigh numerical aperture of up to 0.7, enabling the detected edges to be sharper and have closely matched intensities. We also experimentally demonstrate its capacity for effective edge detection. This ultracompact and facile-to-fabricate thin-film spatial differentiator holds promising prospects for applications in ultrafast optical processing and biomedical imaging. 
    more » « less